
Parallelizing Data Analysis	

Tom Peterka	

1	

Big Data Get Together	

10/26/12	

Obvious, but worth reminding 	

•  Big science begets big data, and	

–  Big data analysis needs big science resources	

•  Data analysis is data intensive.	

– Data intensity = data movement.	

•  Big data movement is hard fun.	

–  Embarrassingly parallel and MapReduce are limited.	

•  Most analysis algorithms are not up to the
challenge	

–  Either serial, or 	

– Communication, I/O are scalability killers	

2	

There is hope.	

3	

4	

Parallel Time-Varying Flow Analysis	

Approach	

-In core / out of core processing
of time steps	

-Simple load balancing (multiblock
assignment, early particle
termination)	

-Adjustable synchronization
communication 	

Collaboration with the Ohio State University	

!"#$

!%
!&

!'
()*+,

-$.!"+$/

/01!"1)
2$"34(*.4**5

/01+$

$0*+4

!$#0*.1)
2$"34(*.4**5

!"#$6/!$0/

!7
!'

!8

!9
!8

!:

Pathline tracing of 32 time-
steps of combustion in the
presence of a cross-flow in
S3D (in collaboration with
Jackie Chen, Hongfeng Yu,
Janine Bennett, Ray Grout)	

Parallelization within epochs and
serialization across epochs adds
greater flexibility.	

Peterka et al., A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields, IPDPS
‘11	

Parallel Particle Tracing	

Particle tracing of ¼ million particles in Nek5000 20483 thermal hydraulics dataset results
in strong scaling to 32K processes and an overall improvement of 2X over earlier
algorithms (In collaboration with Paul Fischer and Aleks Obabko)	

50
10

0
15

0
20

0

Strong Scaling Performance

Number of Processes

Ti
m

e
(s

)

1024 2048 4096 8192 16384 32768

Original
Optimized
Perfect scaling

5	

Parallel Topological Analysis	

- Transform discrete scalar field into Morse-Smale complex	

-Nodes are minima, maxima, saddle points of scalar values	

- Arcs represent constant-sign gradient flow	

- Used to quickly see topological structure	

Two levels of simplification of
the Morse-Smale complex for jet
mixture fraction.	

Collaboration with SCI Institute, University of Utah	

Example of computing discrete gradient and Morse-Smale Complex	

1	
 2	

3	
 4	

Gyulassy et al., The Parallel Computation of Morse-Smale Complexes, IPDPS ‘12	

6	

Parallel Morse-Smale Complex	

Computation of Morse-Smale complex in 11523 Rayleigh-Taylor instability
data set results in 35% end-to-end strong scaling efficiency, including I/O. 	

20
50

10
0

Total & Compute+Merge Time For Rayleigh−Taylor Mixing

Number of Processes

Ti
m

e
(s

)

2048 8192 16384 32768

Total time
Compute + merge time
Perfect scaling

7	

Parallel Voronoi Tessellation	

Approach	

-Compute parallel Voronoi tessellation in situ	

-Compute connected components of threshold-filtered Voronoi cells to identify cosmological
voids	

-Time-varying tessellations help scientists understand feature evolution	

Deriving a dense mesh representation from a sparse N-body particle simulation allows scientists to
conduct novel analyses not possible with the original data, because particle density is now a continuous
function that can be computed everywhere in the field. The Voronoi tessellation is ideal for cosmological
data because it self-adapts to widely varying particle distributions. 	

Applying threshold filtering on cell volume and forming connected components of remaining Voronoi cells locates cosmological voids.	

Collaboration with Salman Habib, Katrin Heitmann, and the HACC cosmology group (HEP, MCS, ALCF divisions of
ANL)	

8	

Parallel Information Entropy	

Computation of information entropy in 126x126x512
solar plume dataset shows 59% strong scaling efficiency.	

9	

Black Box Parallelism	

10	

Fortunately, a variety of different parallel analyses have common
data needs.	

You do this yourself with the help of serial
libraries such as OSUFlow, Qhull, VTK (don’t
have to start from scratch)	

DIY does this for
you	

Analysis	 Applica+on	 Applica+on	
Data	 Model	

Analysis	
Algorithm	

Par$cle	 Tracing	 CFD	 Unstructured	
Mesh	

Numerical	
Integra$on	

Informa$on	
Entropy	

Astrophysics	 AMR	 Convolu$on	

Morse-‐Smale	
Complex	

Combus$on	 Structured	
Grid	

Graph	
Analysis	

Computa$onal	
Geometry	

Cosmology	 Par$cles	 Voronoi	
Tessella$ons	

Communica+on	 Addi+onal	

Nearest	
neighbor	

File	 I/O,	
Domain	
decomposi$
on,	 process	
assignment,	
ulies	

Global	
reduc$on,	
nearest	 neighbor	

Global	 reduc$on	

Nearest	
neighbor	

11	

Draw a line between user space and
data space.	

•  Let users do what they do best	

ie, custom serial analysis	

• Let DIY do what it does best	

ie, data parallelization	

12	

DIY is that common data library.	

DIY usage and library organization	

Features	

-Parallel I/O to/from storage	

-Domain decomposition	

-Network communication	

-Written in C++ w/ C bindings,
called from Fortran, C, C++	

-Autoconf build system	

-Lightweight: libdiy.a 800KB	

-Maintainable: ~15K lines of
code	

Main Ideas and Objectives 	

-Large-scale data-parallel analysis
(visual and numerical)	

-For scientists, visualization
researchers, tool builders	

-In situ, coprocessing, postprocessing	

-MPI + threads hybrid parallelism	

-Scalable data movement algorithms	

-Runs on Unix-like platforms, from
laptop to supercomputer (including
all IBM and Cray HPC leadership
machines)	

Benefits	

-Researchers can focus on their

own work, not on parallel
infrastructure	

-Analysis applications can be
custom	

-Reuse core components and
algorithms for performance and
productivity	

13	

Usage	

14	

Examples	

•  Block I/O	

–  Reading data, writing analysis results	

•  Static	

–  Merge-based reduction	

–  Swap-based reduction	

–  Neighborhood exchange	

•  Time-varying	

–  Neighborhood exchange	

•  Spare thread	

–  Simulation and analysis overlap	

•  MOAB	

–  Unstructured mesh data model	

•  VTK	

–  Integrating DIY communication with VTK

filters	

•  R	

–  Integrating DIY communication with R
stats algorithms	
 Basic flow of a DIY’ed program	

15	

Example Usage	

// initialize	

int dim = 3; // number of dimensions in the problem	

int tot_blocks = 8; // total number of blocks	

int data_size[3] = {10, 10, 10}; // data size	

MPI_Init(&argc, &argv); // init MPI before DIY	

DIY_Init(dim, ROUND_ROBIN_ORDER, tot_blocks, &nblocks,

data_size, MPI_COMM_WORLD);	

// read data	

 for (int i = 0; i < nblocks; i++) {	

 DIY_Block_starts_sizes(i, min, size);	

 DIY_Read_add_block_raw(min, size, infile, MPI_INT, (void**)&(data[i]));	

}	

DIY_Read_blocks_all();	

// decompose domain	

int share_face = 0; // whether adjoining blocks share the same face	

int ghost = 0; // additional layers of ghost cells	

int ghost_dir = 0; // ghost cells apply to all or some sides of a block	

int given[3] = {0, 0, 0}; // constraints on blocking (none)	

DIY_Decompose(share_face, ghost, ghost_dir, given);	

16	

Example API Continued	

// your own local analysis	

// merge results, in this example	

// could be any combination / repetition of the three communication patterns	

int rounds = 2; // two rounds of merging	

int kvalues[2] = {4, 2}; // k-way merging, eg 4-way followed by 2-way merge	

int nb_merged; // number of output merged blocks	

DIY_Merge_blocks(in_blocks, hdrs, num_in_blocks, out_blocks, num_rounds, k_values,
&MergeFunc, &CreateItemFunc, &DeleteItemFunc, &CreateTypeFunc, &num_out_blocks);	

// write results	

DIY_Write_open_all(outfile);	

DIY_Write_blocks_all(out_blocks, num_out_blocks, datatype);	

DIY_Write_close_all();	

// terminate	

DIY_Finalize(); // finalize DIY before MPI	

MPI_Finalize();	

17	

Summary	

18	

Benefits	

•  Productivity	

–  Express complex algorithms	

•  Multiple blocks per process	

•  Neighbor inclusion	

•  Complete / partial reductions	

•  Neighborhood communication pattern	

–  Simplify existing tasks	

•  Custom data type creation	

•  Compression	

•  Performance	

–  Published scalability	

–  Configurable algorithms	

19	

To Do: Research Directions	

•  Advanced decomposition	

–  Block groups	

•  More / better low-level communication algorithms	

–  Less synchronous, more overlap with computation	

–  Point to point between blocks	

•  High-level communication operations	

–  Ghost cell exchange	

–  Kernel convolution (stencil)	

•  Load balancing and Resiliency	

–  Block overloading	

–  Dynamic reassignment	

•  Keeping up with new developments	

–  Programming models	

•  MPI + X, MPI-3	

–  Architectures	

•  Mira, Titan	

20	

Resources	

•  Software	

–  https://svn.mcs.anl.gov/repos/diy/trunk	

•  Publications	

–  Peterka et al., Scalable Parallel Building Blocks for
Custom Data Analysis, LDAV'11.	

–  Peterka et al., T., Versatile Communication Algorithms
for Data Analysis, IMUDI'12.	

–  Gyulassy et al., The Parallel Computation of Morse-
Smale Complexes, IPDPS'12.	

–  Peterka et al., A Study of Parallel Particle Tracing for
Steady-State and Time-Varying Flow Fields, IPDPS'11. 	

•  More info	

–  tpeterka@mcs.anl.gov	

–  www.mcs.anl.gov/~tpeterka	

21	

